External Authentication Integration
Guide

Generated on February 14, 2026

Tenant Integration Guide for Central Tickets
System

Overview

This guide explains how external applications and tenants can integrate with the Central
Tickets multi-tenant SaaS system. The system supports secure authentication redirects
where external apps can authenticate users and seamlessly redirect them to tenant-specific
ticket systems.

Integration Methods

1. Authentication Redirect Flow (Recommended)

Best for: Web applications that need to authenticate users and redirect them to the ticket
system

How It Works

1. External app authenticates user

2. External app calls Central Tickets API with user data

3. User gets redirected to tenant subdomain with encrypted token
4

. User is automatically logged in and redirected to final destination

API Endpoint

POST https://ticketsystem flare99. conl api/auth/redirect/{tenant_sl ug}
Cont ent - Type: application/json

{

“emai |l ": "user @xanpl e. cont',

"name": "John Doe",

"redirect _url": "https://your-app. com dashboard"
}

Example Implementation

JavaScript/Node.js:

async function redirectToTi ckets(enmail, nane, tenantSlug, redirectUl) ({
const response = await fetch(https://ticketsystemflare99.confapi/auth/redir
met hod: ' POST'
headers: {
' Content - Type': 'application/json'
¥
body: JSON. stringify({
emai | : emil
name: nane,
redirect _url: redirectUrl
})
1)

if (response.redirected) {
wi ndow. | ocati on. href = response. url

function redirect ToTi ckets($email, $nanme, $tenantSlug, $redirectUl) {
$ch = curl _init();

curl _setopt ($ch, CURLOPT_URL, "https://ticketsystem flare99. conm api/auth/redi
curl _setopt($ch, CURLOPT _POST, true);
curl _setopt ($ch, CURLOPT_POSTFI ELDS, json_encode([
"email' => $enui |,
'name' => $nane,
"redirect _url' => $redirectUrl
)
curl _setopt ($ch, CURLOPT_HTTPHEADER, [
' Cont ent - Type: application/json'
1)
curl _setopt ($ch, CURLOPT_RETURNTRANSFER, true);
curl _setopt($ch, CURLOPT_FOLLOALOCATI ON, true);

$response = curl _exec($ch);
$redirect Ul = curl _getinfo($ch, CURLI NFO EFFECTI VE_URL);

curl _cl ose($ch);

header ("Location: {$redirectUl}");
exit;

Python:

i mport requests

def redirect_to_tickets(email, name, tenant_slug, redirect_url):
response = requests. post (
f*https://ticketsystemflare99. coniapi/auth/redirect/{tenant_slug}",
j son={
"emai | ": emmil,
"name": nane,
"redirect _url": redirect _url

al | ow redirects=Fal se

)

i f response.status_code == 302:
redirect _url = response. headers. get (' Location')
return redirect(redirect _url)

2. Direct API Integration
Best for: Applications that need full programmatic access to ticket management
Authentication

Use tenant-specific API tokens:

Aut hori zati on: Bearer {tenant_api _token}

X- Tenant - API - Token: {tenant api _t oken}

Available Endpoints

Tickets

POST [api/tickets Create ticket

GET [api/tickets Li st tickets

GET [api/tickets/{id} Cet ticket details
PUT [api/tickets/{id} Updat e ticket
DELETE /api/tickets/{id} Del ete ticket

Categories
GET [api / cat egori es Li st categories

Tenant |Info
GET [api / t enant Get tenant information

Example API Usage

/|l Create a ticket
const response = await fetch('https://ticketsystemflare99.conlapi/tickets', {
met hod: ' POST' ,
headers: {
"Aut hori zation': 'Bearer YOUR TENANT APl TOKEN ,
' Content - Type': 'application/json'
¥
body: JSON. stringify({
title: 'Support Request',
description: 'l need help with...",
priority: 'medium

})
1)

4. JWT Login Integration (New - Recommended for Seamless
Authentication)

Best for: Applications that want direct user login without redirects
How It Works

1. External app generates JWT token with user data
2. External app calls JWT login endpoint

3. User gets authenticated and session created

4.

User can access ticket system directly

API Endpoint

POST https://ticketsystemflare99. confapi/jwt/login
Cont ent - Type: application/json

{
"token": "eyJOeXAi O JKV1Q LCIhbGei G JI Uzl INi J9. .. "
"tenant _slug": "your-tenant-slug"

}

JWT Token Generation

Your application must generate a JWT token signed with your tenant's JWT secret:

/'l Node.js exanple
const jw = require('jsonwebtoken');

function generateJWToken(email, name, tenantSecret) {
const payl oad = {
emai |l : email,
name: nane,
iat: Math.floor(Date.now() / 1000),
exp: Math.floor(Date.now() / 1000) + (2 * 60) // 2 m nutes

i

return jwt.sign(payl oad, tenantSecret, { algorithm 'HS256"' });

Complete Integration Example

JavaScript (Browser):

async function |ogi nToTi ckets(enail, nanme, tenantSlug, tenantJw Secret) {
// Generate JW token
const token = generateJWToken(emil, nanme, tenantJw Secret);

/1 Call |ogin endpoint
const response = await fetch('https://ticketsystemflare99. confapi/jw/I ogin'
net hod: ' POST'
headers: {
'Content-Type': 'application/json'
I
credentials: "include', // Include cookies for session
body: JSON.stringify({
t oken: token,
tenant _sl ug: tenant Sl ug
})
1)

const result = await response.json();

if (result.success) {
/1 User is now | ogged in
wi ndow. | ocati on. href = result.redirect_url
} else {
console.error('Login failed:"', result.error);

}

PHP (Server-side):

<?php
use Firebase\ JWI\ JWT;

function generateJWToken($enuil, $nane, $tenantSecret) {
$payl oad = [
"emai |l ' => $enmi |
'name' => $nane,
"iat' => tine(),
"exp' =>tinme() + (2 * 60) // 2 mnutes
I

return JW: : encode($payl oad, $tenant Secret, 'HS256');
}

function | ogi nToTi cket s($emai |, $nane, $tenantSlug, $tenantSecret) {
$t oken = gener at eJWI'Token($enai |, $nane, $tenant Secret);

$ch = curl _init(' https://ticketsystemflare99.conm api/jw/login');
curl _setopt ($ch, CURLOPT_POST, true);
curl _setopt($ch, CURLOPT_POSTFI ELDS, json_encode([
't oken' => $token,
"tenant _slug' => $tenant Sl ug
);
curl _setopt ($ch, CURLOPT_HTTPHEADER, [
' Cont ent - Type: application/json'
1)
curl _setopt ($ch, CURLOPT_RETURNTRANSFER, true);

$response = curl _exec($ch);
$result = json_decode($response, true);

if ($result['success']) {
/1 Redirect user to ticket system
header (' Location: ' . $result['redirect_url']);
exit;

Security Notes

o JWT tokens expire in 2 minutes for security
e Tokens must be signed with your tenant's JWT secret
e Use HTTPS for all API calls

e Store tenant JWT secret securely (server-side only)

Step-by-Step Integration Process

Step 1: Tenant Setup

1. Create Tenant Account: Signup at https://ticketsystem flare99. com

2. Configure Domain: Set up your tenant subdomain (e.g., ti ckets. yourconpany. com)
3. Get API Token: Retrieve your tenant API token from settings
4

. Configure DNS: Point your subdomain to the ticket system server

Step 2: Domain Configuration

DNS Confi guration
ti ckets. yourconpany. com CNAME ti cket system fl are99. com

or
tickets.yourconpany.com A YOUR SERVER | P

Step 3: SSL Certificate Setup

Ensure HTTPS is configured for your tenant domain:

Let's Encrypt exanple
certbot certonly --webroot -w /var/www htm -d tickets.yourconpany.com

Step 4: Integration Implementation

Choose your integration method and implement the code in your application.

Step 5: Testing

Use the provided test endpoints:

Test redirect (returns JSON i nstead of redirect)
POST https://ticketsystemflare99. conlapi/test/auth/redirect/{tenant}

Test pages
CET https://ticketsystem flare99. conltest-auth-redirect
GET https://ticketsystemflare99. conitest-auth-redirect-form

Step 6: Go Live

1. Update your code to use production endpoints
2. Test the complete flow
3. Monitor integration logs

4. Handle error cases gracefully
Security Considerations

Token Security

Tokens expire in 2 minutes

Replay prevention using JTI (JWT ID)

Encrypted using AES-256-CBC

Domain binding validation

Rate Limiting

¢ 60 requests per hour per IP for auth redirects

e Configurable rate limits for APl endpoints

Data Isolation

o Complete tenant data isolation
e User sessions scoped to tenant domains

¢ API tokens tenant-specific
Error Handling

Common Error Codes

e 400 Bad Request : Invalid request data

e 401 Unaut hori zed : Invalid API token

e 403 For bi dden : Domain not verified for tenant

e 404 Not Found : Tenant or endpoint not found

e 429 Too Many Requests : Rate limit exceeded

e 500 Internal Server Error :Servererror

Error Response Format

{

"error": "Error nessage",

"code": "ERROR CODE",
"details": "Additional information"

}

Monitoring & Support

Logs

e Security events logged with correlation IDs
e API usage metrics available

e Error tracking and alerting

Support

¢ Integration documentation: /i ntegrati on endpoint
e Test tools available at /t est - aut h-redi rect

e API documentation in repository
JavaScript Integration Examples

Laravel Blade Template Approach (Recommended)

Best for: Laravel applications where you can modify Blade templates

<! DOCTYPE ht ml >
<htm >
<head>
<title>My Website</title>
<meta name="csrf-token" content="{{ csrf_token() }}">
</ head>
<body>
<but t on oncl i ck="cont act Support ()" >Cont act Support </button>

<scri pt>
/| Pass user data from Laravel to JavaScri pt
const currentUser = @ son(]
"emai | => auth()->user()->email ?? null,
"name' => aut h()->user()->nanme ?? null
"tenant _slug' => auth()->user()->tenant->slug ?? 'your-tenant-slug

1)

function getCurrentUserEmail () {
return currentUser. enmail ;

}

function getCurrentUser Nanme() {
return currentUser. nang;

}

function contact Support () {
const email = getCurrentUserEmail ();
const name = get Current User Name() ;

if (lemail || !'nanme) {
alert('Please log in to contact support');
return;

}

/'l Create form and submit

const form = docunent.createEl enent('form);

form met hod = ' POST' ;

formaction = “https://ticketsystemflare99. com api/auth/redirect/${c

const emmil Field = docunent.createEl enent ('input');
ermai | Field.type = 'hidden';

emai |l Field.nane = 'emni | ';

ermai | Fi el d.val ue = emai |l ;

f or m appendChi | d(enmi | Fi el d);

const naneFi el d = docunent. creat eEl ement (' i nput');
nanmeFi el d. type = ' hi dden';

nanmeFi el d. val ue = nane;

f or m appendChi | d(naneFi el d) ;

const redirectField = docunent. createEl ement ('input');

redirectFiel d.type " hi dden' ;

redi rect Fi el d. nane "redirect _url"';

redirect Fi el d.value = wi ndow. | ocation. href; // Return to current page
form appendChi | d(redirectFiel d);

docunent . body. appendChi | d(form;
formsubmt();

</script>
</ body>

</htm >

Meta Tags Approach

Best for: When you can't modify the main template structure

<! DOCTYPE ht ml >
<ht m >
<head>
<title>My Website</title>
<meta name="user-email" content="{{ auth()->user()->email ?? '' }}">
<met a name="user-nane" content="{{ auth()->user()->nanme ?? '"' }}">
<neta nane="tenant-slug" content="{{ auth()->user()->tenant->slug ?? 'your-te
</ head>
<body>
<but t on oncl i ck="cont act Support ()" >Contact Support </button>

<scri pt >
function getCurrentUserEmail () {
return docunent. querySel ector (' neta[name="user-enmil"]"').getAttribute

}

function getCurrent User Nane() {
return docunent. querySel ector (' neta[nane="user-nane"]"').getAttribute(]

}

function contact Support () {
const email = getCurrentUserEmail ();
const name = get Current User Name() ;
const tenant Sl ug = docunent. querySel ector (' meta[name="t enant-slug"]"')

if (lemail || !'nanme) {
alert('Please log in to contact support')
return;

}

/|l Create form and submit

const form = docunent.createEl enment (' forn);

form net hod = ' POST'

formaction = “https://ticketsystemflare99. com api/auth/redirect/ ${t{

const emmil Field = docunent. createEl enent (' input');
enmuai | Field.type = 'hidden'

emai | Field.name = 'emai |l ';

emai | Fi el d.value = email ;

f orm appendChi | d(enmi | Fi el d) ;

const naneFi el d = docunent. creat eEl enent (' i nput"')
naneFi el d. type = ' hi dden'

naneFi el d. nane = ' nang'

naneFi el d. val ue = nane;

f or m appendChi | d(naneFi el d);

const redirectField = docunent. createEl ement ('i nput"')
redirect Fiel d.type ' hi dden'

redirect Fi el d. nane "redirect _url'

redi rect Fi el d. val ue = wi ndow. | ocati on. href;

f orm appendChi | d(redirectField);

docunent . body. appendChi | d(form;
formsubmt();
}
</scri pt >
</ body>
</ htm >

AJAX Approach

Best for: Single Page Applications or when you need dynamic user data

<! DOCTYPE ht m >
<ht m >
<head>
<title>My Website</title>
</ head>
<body>
<button onclick="cont act Support ()" >Contact Support</button>

<scri pt>
async function getCurrentUserData() {
try {
const response = await fetch('/api/user/current', {
met hod: ' GET',
headers: {
' X- CSRF- TOKEN : docunent . querySel ect or (' met a[name="csrf -t
'Content-Type': 'application/json
}
1)

i f (response.ok) {
return await response.json();
} else {
throw new Error(' Failed to get user data');
}
} catch (error) {
console.error('Error fetching user data:', error)
return null

}

function getCurrentUserEmail () {
/1 This would need to be called asynchronously
/'l For synchronous access, use one of the other approaches
return null

}

function getCurrentUser Name() {
/1 This would need to be called asynchronously
return null

}

async function contact Support () {
const userData = await get Current UserData();

if (luserData || !userData.email || !userData.nane) {
alert('Please log in to contact support')
return;

}

/'l Create formand submit

const form = docunent.createEl enent('form);

f orm net hod ' POST' ;

form action “https://ticketsystemflare99. conlapi/auth/redirect/${u

const emmil Field = docunent. createEl enent (' input');
ermai | Field.type = 'hidden';

ermai | Field.nane = 'enmuil"';

ermai | Fi el d. val ue = user Dat a. enai |

f or m appendChi | d(enui | Fi el d) ;

const naneFi el d = docunent. creat eEl enent (" i nput');
nameFi el d. t ype " hi dden' ;

nameFi el d. nanme ' nane' ;

naneFi el d. val ue = user Dat a. nane;

f orm appendChi | d(naneFi el d) ;

const redirectField = docunent. createEl ement ('i nput');
redirectField.type = 'hidden';

redirectField.nane = "redirect _url"';

redi rect Fi el d. val ue = wi ndow. | ocati on. href;

form appendChi | d(redirectField);

docunent . body. appendChi | d(form;
formsubmt();
}
</script>
</ body>
</htm >

Backend API Endpoint for AJAX Approach

Add this route to your rout es/ api . php :

Rout e: : m ddl ewar e(' aut h: sanctum)->get (' /user/current', function (Request $request
return response()->json([
"email' => $request->user()->emil,
'nanme' => $request->user()->nane,
"tenant _slug' => $request->user()->tenant->slug ?? null
1)
1

E-commerce Platform

/l After user login on e-comerce site
async function handl eSupport Request (user Emai |, user Nane) {
awai t redirect ToTi cket s(
user Emai |,

user Nane,
‘your-store',
"https://yourstore. conf account/support'

SaaS Application

/1 I'n user dashboard
public function contact Support (Request $request) {
return redirect ToTi cket s(
Aut h: : user () - >enai |,

Aut h: : user () - >nane,
'your - saas',
rout e(' dashboard')

WordPress Plugin

/1 WordPress integration
add_action('wp_ajax_create_ticket', 'handle_ticket _creation');
function handl e_ticket_creation() ({

$user = wp_get_current_user();

redi rect ToTi cket s(

$user - >user _emai | ,

$user - >di spl ay_nane,

'your - wor dpress-site',
horme_ur | (' / support/thanks')

Troubleshooting

Common Issues

CORS Errors: Enable CORS middleware on server
Domain Not Found: Verify DNS configuration
SSL Errors: Ensure HTTPS certificate is valid

Token Expired: Tokens valid for 2 minutes only

o~ w N

Rate Limited: Implement exponential backoff

Debug Tools

e Browser developer tools for redirect inspection
e Laravel logs for server-side debugging

e Test endpoints for isolated testing

Best Practices

Always use HTTPS for all requests

Validate user input before API calls

Handle errors gracefully with user-friendly messages
Implement logging for integration monitoring

Use environment variables for configuration

Test thoroughly before going live

N o o M 0w DR

Monitor APl usage and set up alerts

Support Resources

Integration Hub: https://ticketsystemflare99.coniintegration

API Documentation: Repository README and inline comments

Test Tools: Built-in test pages and endpoints

Example Code: Multiple language examples provided

This integration guide is maintained with the codebase. Check for updates regularly.

